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Abstract
Optical transmission spectra in quasiperiodic multilayered photonic structures,
composed of both positive (SiO2) and negative refractive index materials, are
calculated by using a theoretical model based on the transfer matrix approach
for normal incidence geometry. The quasiperiodic structures are substitutional
sequences, characterized by the nature of their Fourier spectrum, which can be
dense pure point (e.g. Fibonacci sequence) or singular continuous (e.g. Thue–
Morse and double-period sequences). The transmission spectra for the case
where both refractive indices can be approximated by a different constant
show a unique mirror symmetrical profile, with no counterpart for the positive
refractive index case, as well as a striking self-similar behaviour related to
the Fibonacci sequence. For a more realistic frequency-dependent refractive
index, the transmission spectra are characterized by a rich transmission profile
of Bragg peaks with no more self-similarity or mirror symmetry.

1. Introduction

Materials simultaneously possessing negative magnetic permeability and electric permittivity
are physically permissible and would exhibit a negative refractive index [1]. They were coined
as left-handed materials (LHM) because they support backward waves, for which the electric
field �E , the magnetic field �H , and the Poynting vector �S form a left-handed triplet. Besides,
the group velocity of wave propagation in such media is opposite to its phase velocity, making
the perfect lens possible (for an up-to-date review, see [2]).

Interest in LHM has been revived since 1999 onwards, when an artificial dielectric slab was
designed and verified in experiments to exhibit negative material parameters, giving rise to a
negative effective refractive index at microwave frequencies [3–5]. These unusual artificial
media, which we shall refer to as metamaterials, are designed to possess simultaneously
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negative permittivity ε and permeability μ, respectively, in the same frequency region.
However, a rigorously defined negative refractive index may not necessarily be a prerequisite
for negative refraction phenomena. An alternative approach to attaining negative refraction uses
the properties of photonic crystals, materials that lie on the transition between a metamaterial
and an ordinary structured dielectric [6]. Their potential applications in high-technology
industries have been responsible for the drive for fabrication of theses materials. For instance,
due to their potential for negative reflection, it is possible to fabricate lenses with exotic optical
properties, like optical images of objects that are smaller than the wavelenght of visible light
(such as DNA molecules, proteins, etc). With the development of these superlenses [7], it
is possible to realize photo-nanolithography, which would make smaller electronic device
and circuits, resulting in more powerful computers [8]. Other applications are related to
the development of new types of antennae, computer components and consumer electronics,
such as cell phones, which use light instead of electricity for carrying signals and processing
information, resulting in faster and cheaper communications [9].

To date, there are many methods for fabricating materials with negative refraction index.
The first one was proposed by Pendry [3, 7, 10] by using conducting wires and loops, suspended
in a dielectric substrate. While the wires assume an effective negative dielectric constant, the
various loops provide a negative permeability in the same frequency band [5, 11]. Another
method uses a two-dimensional photonic crystal [12–15], a medium with an in-plane periodic
modulation of the dielectric constant, which, under proper conditions, can act as an effective
medium with an homogeneous negative refractive index. A more recent method was proposed
by Shalaev et al [16], by constructing a periodic array of nanorod pairs on a glass substrate
fabricated using electron-beam lithography. Normally incident light, with an electric field
polarized along the rods and a magnetic field perpendicular to the pair, takes on resonant
behaviour due to the dielectric–metallic architecture. Above the resonant frequency, the circular
current in the pair of rods can lead to a magnetic field opposing the external magnetic field of the
light. The excitation of the plasmons causes resonance for the electric light component, while
the magnetic fields generated by the circular current in the pair of rods causes a resonance for
the magnetic light component, resulting in a resonant behaviour of the refractive index, which
can become negative above the resonance (for a review, see [17]).

Periodic multilayered structures containing negative refractive index materials can be
considered as a sequence of perfect lenses with unique transmittance or reflectance properties in
the Bragg regime [18]. More recently, it has been shown that a one-dimensional periodic stack
of layers with alternating dielectric and negative refractive index material, with zero averaged
refractive index, displays a narrow spectral gap in the transmission, which is quite different
from a Bragg reflection gap [19].

On the other hand, the discovery of quasiperiodic structures has fired up a new field of
condensed-matter physics, giving rise to many practical applications (for an up-to-date review
of this field, see [20]). For example, the multiwavelength second-harmonic generation [21] and
the direct third-harmonic generation [22] have been realized in a Fibonacci superlattice. In the
field of photonic crystals, an absolute photonic band gap in a 12-fold triangle–square tiling has
recently been reported [23]. For quasiperiodic dielectric multilayers, Vasconcelos et al have
shown the fractality of their optical spectra [24, 25], as well as the influence of the oblique
incidence.

It is the aim of this work to investigate the transmission spectra of a light beam
normally incident from a transparent medium into a multilayer photonic structure composed of
SiO2/metamaterial layers arranged in a quasiperiodical fashion, which follows the Fibonacci
(FB), Thue–Morse (TM) and double-period (DP) substitutional sequences. Let us briefly
review the types of quasiperiodic systems considered in this work. First we recall the definition
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Figure 1. Schematic representation showing the geometry of the Fibonacci quasiperiodic multilayer
system considered in this work. Here, L is the size of the whole superlattice structure.

of a substitution sequence. Take a finite set ξ (here ξ = {A, B}) called an alphabet and denote
by ξ∗ the set of all finitely long words that can be written in this alphabet. Now let ζ be a map
from ξ to ξ∗ by specifying that ζ acts on a word by substituting each letter (e.g. A) of this
word by its corresponding image ζ(A). A sequence is then called a substitution sequence, if it
is a fixed point of ζ , i.e. if it remains invariant if each letter in the sequence is replaced by its
image under ζ . As examples of substitution sequences that have attracted the most attention in
physics, we have (all with ξ = {A, B}): (a) the Fibonacci (FB) sequence, where the substitution
rule is A → ζ(A) = AB , B → ζ(B) = A; (b) the Thue–Morse (TM) sequence, with the rule
where A → ζ(A) = AB , B → ζ(B) = B A; (c) the double-period (DP) sequence, where
A → ζ(A) = AB , B → ζ(B) = AA.

Although several theoretical techniques have been used to study the transmission spectra
in these structures, in the present work we make use of the transfer matrix approach to analyse
them, simplifying the algebra which would otherwise be quite involved (for a review, see [26]).
Our main aim is the investigation of the behaviour of the light when it pass through the layered
system, where medium B is fulfilled by a metamaterial and is characterized by a negative
refraction index nB .

The outline of this paper is as follows. In the next section, we present the theoretical
calculation of the transmission spectra, which is based on the transfer-matrix approach. The
numerical results for these spectra are shown in section 3, including a discussion about their
main features. The conclusions are summarized in section 4.

2. Transfer matrix

We now intend to investigate the light transmission spectra in artificial structures exhibiting
deterministic disorders, i.e. the Fibonacci, Thue–Morse and double-period superlattices. To
calculate the light transmission rate through the multilayer system, we use a transfer-matrix
approach for the electromagnetic fields. To this end, we consider that p-polarized (transverse
electric, TE, wave) light of frequency ω is normally incident from a transparent medium C with
respect to the one-dimensional photonic crystal formed by the layered system (see figure 1). We
choose the z-axis to be normal to the interface, the x-axis to be in the plane of the figure, and
the y-axis to be out of the plane of the figure. While our arguments will apply to a wave
with arbitrary polarization, we have considered the p-polarization mode without any loss of
generality, since, at normal incidence, both s- and p-polarizations give the same results.

The isotropic electromagnetic medium can generally be described by a dielectric
permittivity ε and magnetic permeability μ. Its dispersion relation can be obtained by solving
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the wave equation [19, 27]:

− Z(x)

n(x)

d

dx

[
1

Z(x)n(x)

dE(x)

dx

]
=

(ω

c

)2
E(x), (1)

where n(x) = √
ε(x)

√
μ(x) and Z(x) = √

μ(x)/
√

ε(x) are the refractive index and the
impedance at frequency ω, respectively. They are layer dependent. The medium A, with
thickness dA, is fulfilled by SiO2 and is characterized by a constant positive refractive index n A.
The medium B , with thickness dB , is fulfilled by a metamaterial, characterized by a negative
refractive index nB = √

εB
√

μB . They are surrounded by the transparent medium C with a
constant refractive index nC (see figure 1).

In order to obtain the transmission spectra, we must relate the amplitudes A0
1C and A0

2C of
the electromagnetic field in the transparent medium C at z < 0 to those in the region z > L,
where L is the size of the quasiperiodic structure, by successive applications of the above
equation in each layer, together with Maxwell’s electromagnetic boundary conditions at each
interface along the multilayer system.

The transmission of a normal incident light wave across the interfaces α → β (α, β being
any A, B and C medium) is defined by the interface matrices

Mαβ = 1

2

(
1 + Zα/Zβ 1 − Zα/Zβ

1 − Zα/Zβ 1 + Zα/Zβ

)
. (2)

The propagation of the light wave within one of the layers γ (γ = A or B) is characterized
by the propagation matrices

Mγ =
(

exp(−ikγ dγ ) 0
0 exp(ikγ dγ )

)
, (3)

with kγ = nγ ω/c.
For the whole quasiperiodic structure, we obtain(

A0
1C

A0
2C

)
= MN

(
Am

1C
0

)
, (4)

with MN = MC A MA MAB MB MB A MA · · · MBC , being the optical transfer matrix of the N th-
generation quasiperiodic multilayer system. This relates the amplitudes A0

1C and A0
2C of the

electromagnetic field in the transparent medium C at z < 0 to those in the region z > L, where
L is the size of the quasiperiodic structure. This transfer matrix is formed by the product of
matrices Mαβ (α, β = A, B or C) and Mγ (γ = A or B) according to the type of quasiperiodic
array and the generation number N of the quasiperiodic sequence considered in the multilayer
arrangement.

The reflectance and the transmittance coefficients are simply given by

R =
∣∣∣∣ M21

M11

∣∣∣∣
2

and T =
∣∣∣∣ 1

M11

∣∣∣∣
2

, (5)

where Mi, j (i, j = 1, 2) are the elements of the optical transfer matrix MN .

3. Numerical results

In this section we present numerical simulations for light transmission through the
quasiperiodic multilayered photonic structure. Let us first assume an ideal model system
in which both the magnetic permeability and the electric permittivity can be approximated
by constants in the frequency range of interest. We have chosen medium A as silicon
dioxide (SiO2), whose refraction index is n A = 1.45, while medium B is considered to have
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nB = −1. Also, we assume the individual layers to be quarter-wave layers, for which the
quasiperiodicity is expected to be more effective [28], with the central wavelength λ0 = 700
nm. These conditions yield the physical thickness dJ = (175/nJ ) nm, J = A or B , such
that n AdA = nBdB , which gives a very reversed phase shift in the two materials. Defining
n̄ = n AdA + nBdB , this assumption means the so-called zero-n̄ photonic region. Further, we
also consider medium C to be a vacuum, and the phase shifts are given by:

δA = (π/2)� cos(θA); δB = −(π/2)� cos(θB) (6)

where � is the reduced frequency � = ω/ω0 = λ0/λ.
For normal incidence, θA = θB = 0, and δA = −δB . Here, the negative phase shift for

medium B means that the light waves propagate in a direction opposite to the energy flux (+z-
direction in figure 1), i.e. one plane light wave, whose electromagnetic field is proportional to
exp(−iδB), will itself propagate in the (−z)-direction, while the Poynting vector propagates
in the (+z)-direction. Therefore, at medium B the effect of the negative refraction index is
to change the forward waves exp(iδB) into backward waves exp(−iδB) and vice versa. This
effect keeps the same configuration for the incident and reflected electromagnetic wave at the
interface A–B , but the electromagnetic wave at layer B has a sign change in the exponentials
when compared to the electromagnetic wave at layer A. This effect is expected to be reflected
somehow in the transmission spectra of the quasiperiodic multilayered systems treated here.

The optical transmission spectrum for the ninth-generation (55-layer) quasiperiodic
Fibonacci sequence, as a function of the reduced frequency �, is shown in figure 2(a).
The transmission spectrum presents a unique mirror symmetrical profile around the midgap
frequency � = 1 (which is, of course, the midgap frequency of a periodic quarter-wavelength
multilayer). Besides, the structure is transparent (the transmission coefficient is closely equal
to 1.0) at the reduced frequencies � = 0.898 and � = 1.101, as we can see in figure 2(b),
forming two broad peaks, also distributed symmetrically around � = 1. The condition of
transparentness implies that the layers A and B are equivalent from a wave point of view.
Furthermore, the transmission spectrum has a scaling property with respect to the generation
number of the Fibonacci sequence, within a symmetrical interval around � = 1. To understand
this scaling property, consider figure 2(b), which shows the optical transmission spectrum
of figure 2(a) for the range 0.80 < � < 1.20. This spectrum is the same, as shown in
figure 2(c), to the one representing the fifteenth-generation (877-layer) quasiperiodic Fibonacci
sequence (i.e. it has been recovered after six Fibonacci generations), for the range of frequency
reduced by a scale factor approximately equal to 25. Although it has a different scale and
profile, as expected, this striking self-similar pattern was also found for the case where
medium B is a positive refractive index material [24], and indeed this is a consequence that all
Fibonacci structures possess a self-similarity profile around the fixed point δ = (m + 1/2)π ,
m = 0, 1, . . . [29].

The spectrum for the Thue–Morse quasiperiodic structure for its ninth generation is
shown in figure 3. The transmission spectrum again presents a unique mirror symmetrical
profile around the midgap frequency � = 1. However, instead of exhibiting a self-similar
transmission coefficient, as observed for the Fibonacci case, the numerical solution shows
that the photonic band gap covers all frequencies, except for the singular frequency points
� = 0, 1, 2, . . ., meaning delta shifts equal to integral multiples of π/2. This fact is in
apparent disagreement with the result presented in [19], where the photonic gap, considering
a periodic stack AB AB · · ·, was found to cover all frequencies except for singular frequency
points with delta shifts equal to integral multiples of π . However, for large-generation numbers
(the transverse magnetic, or TM, ninth generation number means 210 building blocks A and
B), the Thue–Morse quasiperiodic structure resembles the periodic AAB B AAB B · · · array
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Figure 2. Normal-incidence transmission spectra of light beam into a quasiperiodic Fibonacci
multilayered photonic structure: (a) the transmittance T as a function of the reduced frequency
� = ω/ω0 for the ninth generation of the Fibonacci sequence; (b) same as in (a), but for the
reduced range of frequency 0.8 � � � 1.2; (c) same as in (b), but for the 15th generation of the
Fibonacci sequence.

(although they are not totally equal to each other), leading to delta shifts equal to integral
multiples of π/2 instead of π , notwithstanding the fact that the magnitude of the transmissions
depicted in figure 3 is, as expected, not exactly equal to one, as for the one presented in [19].
Note that this spectrum is very different from those shown in [24] for the same sequence, but
for positive refractive index.

The optical transmission spectrum for the ninth-generation double-period quasiperiodic
structure is depicted in figure 4. The structure is symmetrically distributed around � = 1,
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Figure 3. The normal-incident transmission spectra as a function of the reduced frequency
� = ω/ω0 for the ninth generation of the Thue-Morse sequence.

Figure 4. As in figure 3, but for the ninth generation of the double-period sequence.

and shows photonic band gaps, the biggest one for the range of the reduced frequency
0.8 < � < 1.20. The presence of such a large band gap in the central frequency range area is a
surprising result, and has no counterpart either with the other quasiperiodic sequences studied
here or with those obtained for a multilayered system without the presence of a metamaterial.

The influence of the metamaterial in the light wave transmission spectra in the
quasiperiodic superlattices is shown in figure 5 by means of the transmission rate as a function
of the negative refraction index n in layer B , considering the midgap frequency of a periodic
quarter-wavelength multilayer � = 1. The Fibonacci case is plotted in figure 5(a), while the
Thue–Morse and double-period cases are plotted in figures 5(b) and (c), respectively. We have
considered all of them represented by their ninth generation. Quite interestingly, we can now
observe that the optical transmission spectra for all sequences presents a different oscillatory
behaviour for each quasiperiodic structure. For the Fibonacci and double-period cases, the
structure is periodic within the interval 2m − 1 < |n| < 2m + 1, m = 1, 2, . . ., while for the
Thue–Morse case the periodicity is defined within the range m < |n| < 2m, m = 1, 2, . . ..
There is a narrow band gap for the double-period case around the odd values of the refractive
index, with no counterpart for the other quasiperiodic structures.

The above discussions apply only to the ideal case where both the magnetic permeability
and the electrical permittivity are frequency non-dispersive, which is valid under the assumption
that the size of the fabricated negative refractive index material can be as tiny as the normal
positive refractive index material. However, all realized artificial negative refractive index
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(a)

(b)

(c)

Figure 5. Transmission coefficients T as a function of the absolute value of the negative refraction
index n at � = ω/ω0 = 1. We have considered the ninth generation for all quasiperiodic structures:
(a) Fibonacci; (b) Thue–Morse; (c) double-period.

metamaterials have an electric permittivity ε and a magnetic permeability μ that are frequency
dispersive, being simultaneously negative only within a narrow frequency bandwidth. Since
microstructures of practical negative refractive metamaterials are of the order of a few
millimetres, their typical frequency region ranges from 1 to 14 GHz.

For convenience, we will use a causal plasmonic form for the dielectric permittivity
ε(ω) mimicking the Drude–Lorentz model, which can be achieved by using an array of wire
elements into which cuts are periodically introduced. Neglecting any damping term (when
lossy metamaterial is considered, the dumping factor can be defined as a fraction of the plasma
frequency), the composite material possesses a negative refractive index in the microwave
region, whose corresponding dielectric permittivity ε(ω) and magnetic permeability μ(ω) are
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Figure 6. Profile of the negative refractive index in layer B (metamaterial) as a function of the
reduced frequency ω/ωp, where ωp is the plasma frequency.

given respectively by [30]:

ε(ω) = 1 − ω2
p/ω

2, (7)

μ(ω) = 1 − Fω2/(ω2 − ω2
0), (8)

where the plasma frequency ωp, the resonance frequency ω0, and the fraction F are determined
only by the geometry of the lattice rather than by the charge, effective mass and density of
electrons, as is the case in naturally occurring materials. In this work we use ω0/2π = 4 GHz,
ωp/2π = 10 GHz, and F = 0.56, motivated by the experimental work of Smith and
collaborators [4].

Figure 6 shows the profile of the refractive index in the metamaterial layer (B) as a function
of the reduced frequency ω/ωp, corresponding to the range of frequency from 4 to 6 GHz,
where the permittivity and the permeability are simultaneously negative. Observe the sharp
behaviour of the negative refractive index near the frequency close to 4 GHz. Then, it shows
a smooth profile until it reaches a 6 GHz frequency which defines the frequency region for the
zero refractive index. This zero refractive index displays a narrow spectral gap in transmission,
which is quite different from the usual Bragg reflected band gap. For frequencies larger than
6 GHz, both the metamaterial and SiO2 have a positive refractive index n. Therefore the
band gaps above this frequency result from the Bragg reflection due to the modulation of the
impedance and the refractive index.

In figure 7 we show the transmission spectra for the quasiperiodic sequences studied here,
considering the refractive index nB depending on ω in the frequency range 0.4 < ω/ωp <

0.6, where it is negative (see figure 6). The thickness of each medium is chosen from
(ε j∞)1/2d j = λ0/4, with εA∞ = εA = 12.3, μA(ω) = 1 and εB∞ = 1. In figure 7(a) we
show the transmission spectra for the Fibonacci sequence considering its generation number
N = 5, 6, 7, 8. Clearly, we can observe that the spectra is no longer self-similar. Furthermore,
instead of a symmetrical distribution, we have an optical gap, starting from ω = 0.425, which
becomes broader as long as the Fibonacci generation number N increases. After that, it presents
several Bragg peaks, whose number also increases with N . The transmission spectra for the
Thue–Morse quasiperiodic multilayered structure is plotted in figure 7(b) for its generation
number N = 5, 6, 7, 8. Again, we can observe a symmetry-break also for this case and
an optical main gap in the range 0.465 < ω/ωp < 0.485. For the double-period case,
depicted in figure 7(c), the transmission spectra are more similar to the Fibonacci case, but
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(a) (b)

(c)

Figure 7. Transmission coefficients T as a function of the reduced frequency ω/ωp for the case
of normal incidence, considering different generation numbers of the quasiperiodic structures: (a)
Fibonacci; (b) Thue–Morse; (c) douple-period.

with a richer structure of Bragg peaks, together with a broader pass-band around ω/ωp = 0.45.
Also, observe the formation of another broad peak around ω/ωp = 0.53 as the double-period
generation number increases.

4. Conclusions

In summary, we have presented the transmission spectra of light waves which propagate
through quasiperiodic Fibonacci, Thue–Morse and double-period multilayers, where one of
their components has a negative refractive index. Considering a frequency-independent
refractive index, a striking self-similar pattern is presented for the Fibonacci structure.
Furthermore, a unique mirror symmetric profile, with no counterpart for the positive refractive
index case, is the main signature of the light transmission spectra in all the quasiperiodic
structures considered here. On the other hand, a more realistic frequency-dependent refractive
index for the metamaterial layer B gives rise to a rich transmission profile of Bragg peaks with
no more self-similarity or mirror symmetry in their optical transmission spectra.
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